Multivariate Generalized Gaussian Distribution: Convexity and Graphical Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate distribution models with generalized hyperbolic margins

Multivariate generalized hyperbolic distributions represent an attractive family of distributions (with exponentially decreasing tails) for multivariate data modelling. However, in a limited data environment, robust and fast estimation procedures are rare. In this paper we propose an alternative class of multivariate distributions (with exponentially decreasing tails) belonging to affine-linear...

متن کامل

The Multivariate Gaussian Distribution

A vector-valued random variable X = X 1 · · · X n T is said to have a multivariate normal (or Gaussian) distribution with mean µ ∈ R n and covariance matrix Σ ∈ S n ++ 1 if its probability density function 2 is given by p(x; µ, Σ) = 1 (2π) n/2 |Σ| 1/2 exp − 1 2 (x − µ) T Σ −1 (x − µ). We write this as X ∼ N (µ, Σ). In these notes, we describe multivariate Gaussians and some of their basic prope...

متن کامل

Copula Gaussian Graphical Models *

We propose a comprehensive Bayesian approach for graphical model determination in observational studies that can accommodate binary, ordinal or continuous variables simultaneously. Our new models are called copula Gaussian graphical models and embed graphical model selection inside a semiparametric Gaussian copula. The domain of applicability of our methods is very broad and encompass many stud...

متن کامل

The Complex Multivariate Gaussian Distribution

Here I introduce package cmvnorm, a complex generalization of the mvtnorm package. A complex generalization of the Gaussian process is suggested and numerical results presented using the package. An application in the context of approximating the Weierstrass σ-function using a complex Gaussian process is given.

متن کامل

Testing Unfaithful Gaussian Graphical Models

The global Markov property for Gaussian graphical models ensures graph separation implies conditional independence. Specifically if a node set S graph separates nodes u and v then Xu is conditionally independent of Xv given XS . The opposite direction need not be true, that is, Xu ⊥ Xv | XS need not imply S is a node separator of u and v. When it does, the relation Xu ⊥ Xv | XS is called faithf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2013

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2013.2267740